Workshopreihe

Nutzung regenerativer Energiequellen
für die Wärmewende

Teilprojekt 3:

Qualitätsanforderungen an
Erdwärmesonden-Verfüllbaustoffe

ZAE BAYERN

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

TP 3: Qualitätsanforderungen an Erdwärmesonden-Verfüllbaustoffe

Teilprojekt 3 Qualitätsanforderungen an Erdwärmesonden-Verfüllbaustoffe

TP 3.1:

Filtrationsverhalten von EWS-Verfüllbaustoffen

TP 3.2:

Ermittlung der hydraulischen Durchlässigkeit von Systemproben

TP 3.3:

Realitätsnahe Kombination von Untersuchungsaspekten von Filtrationseffekten

TP 3.4:

Analyse der Verfüllqualität von EWS in einem realen Untergrund

TP 3.5:

Neues Verfüllmesskonzept für EWS

© Hochschule Biberach

19.06.2024

TP 3.1 – Filtrationsverhalten von Erdwärmesonden-Verfüllbaustoffen

Messung des Druckverlaufs in der Verfüllung realer EWS-Bohrungen

- Sandstein
- Tonstein
- Granit

Nachbildung eines Bohrlochs im Versuchsstand

- Wasserabgabe aus dem Baustoff möglich
- Druckbeaufschlagung der Suspension
- Druckverlauf im Baustoff
- Rückbau und Analyse der Verfüllung

Vergleich und Erklärung der gemessenen Druckkurven

Rückschluss auf die Vorgänge im Untergrund

Druckverlauf in Bohrungen in Abhängigkeit vom Untergrund

Verfüllung im PVC-Rohr

im Tonstein / Mergel

im Sandstein

Sensortiefe: 5,50 m uGOK

Suspensionsdichte: 1,94 g/cm³

Sensortiefe: 47 m uGOK Suspensionsdichte: 1,57 g/cm³ Sensortiefe: 44 m uGOK

Suspensionsdichte: 1,94 g/cm³

Verpressende bei t = 0 h

Relativdruckmessungen: 0 bar = Atmosphärendruck

Filtrationsprozesse bei der Verfüllung von Erdwärmesonden

- Filtration ist die Separation von Feststoffpartikeln und Filtrat
- Treibende Kraft dieser Vorgänge ist der in der Verfüllsuspensionssäule vorliegende Druck

Filtrationsversuchsstand – Nachbildung der Druckverhältnisse in tiefen Bohrlochabschnitten

Schematische Darstellung des Versuchsstands

Ergebnisse der Laboruntersuchungen von filtrierten Bohrlochabschnitten

Dichte

Wassergehalt*

Wärmekapazität

Referenzproben unfiltriert W/F 0,8 (Baustoff A)

----- W/F 0,3 (Baustoff B)

W/F = Wasser-Feststoffverhältnis

*Bestimmung nach DIN EN ISO 17892-1 $(m_w / m_d) \times 100 [\%]$

Zusammenfassung der Erkenntnisse aus den Filtrationsversuchen

Auswirkungen der Filtrationsvorgänge auf den Verfüllbaustoff

- Trennung des Verfüllmaterials in Strömungskanal und Filterkuchenbereich
- Veränderung der Baustoffeigenschaften gegenüber nicht verfülltem Baustoff
- Ausbleiben von Lunkern und Entmischungen gegenüber bisherigen Untersuchungen in Versuchsaufbauten mit wasserundurchlässiger Bohrlochwandung

TP 3.4 – Analyse der Verfüllqualität von Erdwärmesonden im realen Untergrund

Erstellung von EWS-Bauwerken im Steinbruch 06/2021 & 06/2022 Ca. 14 m mächtige Deckschicht aus Löss, darunter Kalkstein

Geophysikalische Bohrlochvermessung

Übersicht der EWS-Ausführungen

Freilegung und Bergung der EWS-Bauwerke

solites

lagenweise Freilegung von EWS-Bauwerken, 06/2023

Bergung der EWS-Bauwerke

Steinbruch im Endausbauzustand

Positionen der rückgebauten Erdwärmesonden Nr. 1 bis 8

Optische Analyse und Auffälligkeiten

Vergleich der Querschnitte in 2 bis 2,5 m Tiefe uGOK:

solites

EWS 1

EWS 2

EWS 3

EWS 4

EWS 5

EWS 6

EWS 7

EWS 8

weitere Merkmale:

Position Sondenrohre

Bohrlochdurchmesser
© Solites / QEWS+ Projektpartner

Auffälligkeiten

Untersuchung der Bohrlochgeometrie I

solites

Sonde 7: deutliche Zunahme des Bohrlochdurchmessers nach Übergang in den nicht verrohrten Bereich

Untersuchung der Bohrlochgeometrie II

Sonde 7: Freilegung im Übergang von Löss zu Kalkstein

Bohrlochdurchmesser entspricht Bohrdurchmesser

Vergleich von Filtrationsversuchen mit realen EWS aus Merdingen

solites

Dichte

Wassergehalt*

Wärmeleitfähigkeit

Referenzproben unfiltriert W/F 0,8 (Baustoff A)

--- W/F 0,3 (Baustoff B)

(W/F = Wasser-Feststoffverhältnis)

grau: Filtrationsversuche

bunt: Reale EWS

*Bestimmung nach DIN EN ISO 17892-1 (m_w / m_d) x 100 [%]

Zusammenfassung der Erkenntnisse zur Verfüllqualität aus Feldversuchen

- Es sind keine Unterschiede der Bohrlochintegrität in Abhängigkeit vom Bohrlochdurchmesser oder der Sondenausführung zu Beobachten.
- Alle freigelegten EWS zeigen ein gute Verfüllqualität. Diese Qualität ist unbedenklich hinsichtlich in BW genehmigter EWS.
- Im Übergangsbereich von verschiedenen Geologien traten Lunker auf.
 Solche Übergangsbereiche sollten in weiteren Untersuchungen genauer untersucht werden.

TP 3.2 & 3.3 - Vertikale hydraulische Abdichtung von EWS-Bauwerken

Teilprojekt 3.2 Ermittlung der hydraulischen Durchlässigkeit von Systemproben

Teilprojekt 3.3 Realitätsnahe Kombination von Untersuchungsaspekten von Filtrationseffekten

Motivation

Schutz des Grundwassers und Vermeidung des Wasseraustausches zwischen Grundwasserstockwerken Ziel

EWS-Bauwerke mit geringer vertikaler hydraulischer Durchlässigkeit^{a)}

a) Staatliche Geologische Dienste der Deutschen Bundesländer: "Ad-hoc-Arbeitsgemeinschaft Hydrogeologie – Empfehlungen zur Durchlässigkeit", 2015

19.06.2024 © ZAE Bayern

Ziel: EWS-Bauwerke mit geringer vertikaler hydraulischer Durchlässigkeit

Weg zum Ziel

- Fortgeschrittene Analysen zur hydraulischen Durchlässigkeit von Systemproben
- Standardisierte Methodik
- Komponenten- und Materialabhängigkeit Rohre, Filtration der Verfüllsuspension
- Alterungseinflüsse Druck-, Temperatur- und Frost-Tau-Wechsel
- Kombination der unterschiedlichen Abhängigkeiten und Einflüsse
- Längerfristige Untersuchungen
- Tieferes Verständnis über Systemdichtheit in einem EWS-Bauwerk
- Beitrag zur VDI 4640 Blatt 2 –
 Erdgekoppelte Wärmepumpenanlagen

19.06.2024 © ZAE Bayern 20 | 34

TP3.2 Ermittlung der hydraulischen Durchlässigkeit von Systemproben

19.06.2024 © ZAE Bayern

TP3.3 Realitätsnahe Kombination von Untersuchungsaspekten von Filtrationseffekten

Querschnitt der Referenzprobe Baustoffdichte: 1,76 kg/l

Querschnitt der filtrierten Probe Baustoffdichte: 2,20 kg/l

19.06.2024 © ZAE Bayern 22 | 3

Zusätzliche Untersuchungen an modifizierten Triaxialzellen (MT) und Vollproben

19.06.2024 © ZAE Bayern 23 | 34

Versuchsübersicht zur Systemdurchlässigkeitsmessung

Verfüllbaustoff	TP3.2 Systemproben		TP3.3 Filtrationsproben		
	Probe 1	Probe 2	Probe 3 Referenz	Probe 4 filtriert	Modifizierte Triaxialzellen
1. Ringversuch quarzbasiert					
2. Ringversuch phonolithbasiert					
3. Ringversuch graphitbasiert					3 Proben tonbasiert, mit PE-Rohr 3 Proben Tonpellets mit PE-Rohr

19.06.2024 © ZAE Bayern 24 | 34

Typischer Messverlauf an Systemtriaxialzellen

Temperaturabhängigkeit

- Systemdurchlässigkeit ist temperaturabhängig
- $k_{\rm f}$ -Veränderungen sind qualitativ reproduzierbar
- T<10 °C führt zu deutlich höheren k_f -Werten

Zeitabhängigkeit

- k_f fällt stetig aufgrund des Rohrkriechens durch erhöhten Sondenrohrdruck
- T-Absenkungen haben meist einen kurzfristigen Peak zur Folge

19.06.2024 © ZAE Bayern 25 | 34

Ergebnisse aller vermessenen Proben

Vergleich zwischen Vollproben, MTs und STs

19.06.2024 © ZAE Bayern 27 | 3

Anfängliche Temperierung

19.06.2024 © ZAE Bayern 28 | 34

Frost-Tau-Wechsel haben einen sekundären Effekt auf Systemdichtheit

Modifizierte Triax vs. Systemtriax (2. Ringversuch)

*k*_{f10} [m/s] 1E-05 - modifizierte Triax Systemtriax 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 NO TELLY 0 0 0 0

© ZAE Bayern

Alterungsbelastungen [°C]

Auswirkungen der Filtration

Einmaliger Versuch mit Wellrohrprobe im Vergleich mit Standard-ST-Probe

Ringspaltbildung an den Sondenrohren

19.06.2024 © ZAE Bayern

Wichtigste Ergebnisse zur vertikalen hydraulischen Durchlässigkeit

- 1) Ungestörte k_{f10} -Werte liegen im sehr schwach durchlässigen Bereich. Dabei ist die Probenherstellung sehr sensibel.
- 2) Sondenfluiddruck- und Temperaturvariationen haben gravierenden Einfluss auf Systemdurchlässigkeit (Randumläufigkeiten am Sondenrohr aufgrund von Ringspaltbildung).
 - Ab erster Absenkung auf 10 °C: Erhöhung um mehrere Zehnerpotenzen
 - Kompensation teilweise durch Sondenrohrinnendruck und Zeitfaktor möglich
- 3) Frost-Tau-Wechsel haben einen eher geringen *zusätzlichen* Einfluss auf Systemdurchlässigkeit (im Vergleich zu Einflüssen durch Temperaturabsenkungen).
- 4) Filtrierte und nicht filtrierte Systemproben weisen ein ähnliches hydraulisches Verhalten auf.
- 5) Alternative Ansätze sollten weiter untersucht werden.

19.06.2024 © ZAE Bayern 34 | 3

Gibt es Fragen?

aufgrund eines Beschlusses des Deutschen Bundestages

FKZ: 03EE4020A-H

Hochschule Biberach

Institut für Gebäude- und Energiesysteme (IGE)

Prof. Dr.-Ing. Roland Koenigsdorff | qewsplus@hochschule-bc.de | www.hochschule-biberach.de

Burkhardt GmbH Neuweiler

Frank Burkhardt | frank@burkhardt-bohrungen.de | www.burkhardt-bohrungen.de

EIFER Karlsruhe

European Institute for Energy Research

Dr. Roman Zorn | roman.zorn@eifer.org | www.eifer.kit.edu

Björn Nienborg| bjoern.nienborg@ise.fraunhofer.de | www.ise.fraunhofer.de

Hans G. Hauri KG Bötzingen

Frank Hauri | f.hauri@hauri.de | www.hauri.de

H.S.W. Ingenieurbüro Rostock

Jens-Uwe Kühl| info@hsw-rostock.de | www.hsw-rostock.de

Karlsruhe Institut für Technologie

Institut für Angewandte Geowissenschaften (AGW)

Dr. Hagen Steger | hagen.steger@kit.edu | www.kit.edu

Solites Stuttgart

Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme

Yannick Reduth | reduth@solites.de | www.solites.de

ZAE Bayern Garching

Bayrisches Zentrum für Angewandte Energieforschung e.V.

Peter Osqyan | peter.osqyan@zae-bayern.de | www.zae-bayern.de

Yannick Reduth Solites – Steinbeis Forschungsinstitut reduth@solites.de

Lukas Pendzich ZAE Bayern e. V. lukas.pendzich@zae-bayern.de